TNZ M/4: 2006 AP40 **TEST REPORT**

Project:

Quality Assurance

Location:

Production Stock

Client:

Road Metals Company Limited

Contractor:

Various

Sampled by:

David Ohs (Road Metals)

Date sampled:

15 January 2024

Sample description: NZTA M/4 AP40

Sampling method: NZS 4407: 2015 (2.4.6.3.2)

Sample condition :

Damp as received

Source:

Waimakariri Quarry

Project No:

6-JRMCO.16/6LC

Lab Ref No:

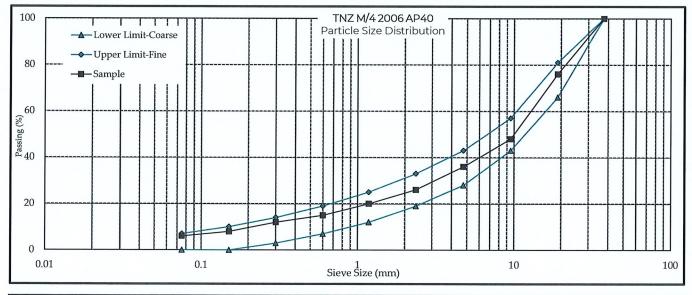
CH12310

Client Ref No:

Chris Newcombe

Particle Size Distribution					
Sieve Size	Percentage Passing				
(mm)	Sample	Limits			
63.0	-	100 - 100			
37.5	100	100 - 100			
19.0	76	66 - 81			
9.5	48	43 - 57			
4.75	36	28 - 43			
2.36	26	19 - 33			
1.18	20 12 - 25				
0.600	15	7 - 19			
0.300	12	3 - 14			
0.150	8	0 - 10			
0.075	6	0 - 7			
% passing the finest sieve is obtained by difference					

Gradii	ng Shape Co	ntrol			
Fraction	% Within Fraction				
(mm)	Sample	Limits			
19.0 - 4.75 9.5 - 2.36 4.75 - 1.18 2.36 - 0.600 1.18 - 0.300 0.600 - 0.150	40 22 16 11 8 7	28 - 48 14 - 34 7 - 27 6 - 22 5 - 19 2 - 14			


Crushing	Resistance		
% Fines @ Spec. Load	-	%	
Specification	-	%	
Crushing Resistance	-	kN	
Nom Aggregate Size	-	mm	
Specified Load	-	kN	

Broken Faces Content of Aggregate					
Fraction	Fraction Percentage by Weig				
(mm)	Sample	Lower Limit			
37.5 - 19.0	91	70			
19.0 - 9.5	92	70			
9.5 - 4.75	98	70			

Plasticity Index					
Sample PI	-				
Specification	<= 5				

Clay Index				
Sample CI	0.5			
Specification	<= 3			

Sand Equivalent (Washed, Mechanical Shaking)				
Sample SE	-			
Specified	>= 40			

Test Methods

Particle Size Distribution

NZS 4407: 2015: Test 3.8.1

Broken Faces Content of Aggregate Clay Index

NZS 4407: 2015: Test 3.14 NZS 4407: 2015: Test 3.5

Date tested: Date reported: 20 January 2025 28 January 2025

Sampling is covered by IANZ Accreditation This report may only be reproduced in full

All information supplied by Client CCREDITED

Approved Signatory

Designation:

Laboratory Manager 28 January 2025

RATING LABORATOR

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

PF-LAB-040 (19/01/2022)

Page 1 of 2

Date:

Christchurch (Hayton Rd)

Quality Management Systems Certified to ISO 9001

52C Hayton Rd

PO Box 1482, Christchurch Mail Centre, 8140, Christchurch, New Zealand

Telephone 03 343 0739 Website www.wsp.com/nz

DRY DENSITY / WATER CONTENT RELATIONSHIP VIBRATING COMPACTION

Project:

Quality Assurance

Location:

Production Stock

Client:

Road Metals Company Limited

Contractor:

Various

Sampled by:

David Ohs (Road Metals)

Date sampled:

15 January 2025

Sampling method:

NZS 4407: 2015 (2.4.6.3.2)

Sample description: Sample condition:

NZTA M/4 AP40

Solid density:

Damp as received

2.68

t/m³ (Assumed)

Source:

Waimakariri Quarry

Project No:

6-JRMCO.16/6LC

Lab Ref No:

CH12310

Client Ref No:

Chris Newcombe

				Test Results				
Maximum dry de Optimum water		2.28 4.6	t/m³ %		Natural wat Fraction tes		1.6 Whole	%
Sample ID		-1%	NAT	+1%	+2%	+3%	+4%	
Bulk density	t/m³	2.206	2.227	2.277	2.335	2.383	2.344	
Water content	%	1.1	1.6	2.7	3.7	4.6	5.7	
Dry density	t/m³	2.183	2.191	2.218	2.251	2.277	2.219	
Sample condition	1	Moist	Wet	Wet	Wet	Wet	Saturated	
		Hard	Firm	Firm	Firm	Firm	Firm	
2.300				Compaction	on Curve			
2.280	``.		· .					Density Curve - 0% Air Voids 5% Air Voids 10% Air Voids
2.240 ————————————————————————————————————								
2.220				The state of the s				

Test Methods		Notes		
Compaction	NZS 4402 : 1986 : Test 4.1.3	All information supplied by Client		

Water Content %

Date tested: 24 January 2025 Date reported: 28 January 2025 Sampling is covered by IANZ Accreditation This report may only be reproduced in full

Approved Signatory

Date:

Designation: Laboratory Manager

28 January 2025

CCREDITED

WG LABORA

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

PF-LAB-027 (19/01/2022)

Page 2 of 2